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1. Introduction

In my opinion, Galois Connections are often explained, either:

• too general – where it relies on group theory, algebraic structures, or category theory
(none of which I’m fluent in), or

• too specific – where it only addresses its application to abstract interpretation,
failing to explain why they are the solution.

In this note, I explain Galois Connections generally on lattices, and work toward their
specialization to abstract interpretation.

2. Lattices

We shall work our way up from lattices to Galois connections. We consider order-
theoretic definitions of lattices, as opposed to algebraic definitions1, which seems most
suitable for our purposes. Let’s start with a property:

Definition 1: Join (∨)

The join ‘x ∨ y’ for some x, y ∈ A is the lowest element in poset A that is greater
than both x and y. Which we formally define as:

• Greater than x: x ≤ x∨ y

• Greater than y: y ≤ x∨ y

• Tight : ∀z . x ≤ z ∧ y ≤ z → (x∨ y) ≤ z

We denote ‘join’ with ∨ to avoid confusion with logical disjunction ∨, which may occur
in the same sentence. An example of ∨ is:

1These definitions are (mostly) equivalent. The algebraic definitions derives ≤ from ∨ / ∧.
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Example 1: Join

Consider poset (P(N),⊆) with join ∪. We take:

• x = {1, 4}

• y = {4, 6}

Here, x ∪ y = {1, 4} ∪ {4, 6} = {1, 4, 6}. Then it satisfies:

• Greater than x: {1, 4} ⊆ {1, 4, 6}

• Greater than y: {4, 6} ⊆ {1, 4, 6}

• Tight : ∀z . {1, 4} ⊆ z ∧ {4, 6} ⊆ z → {1, 4} ∪ {4, 6} ⊆ z

The “Tight” property is a little more complicated. Intuitively, it says that there
exists no z that is greater than both {1, 4} and {4, 6}, while smaller than {1, 4, 6}.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Suppose we had picked an “over-approximating union” ∪̃ as join, where

{1, 4} ∪̃ {4, 6} ≜ {1, 4, 6, 42}

∪̃ is not tight. Pick z = {1, 4, 6}, then:

{1, 4} ⊆ {1, 4, 6} and {4, 6} ⊆ {1, 4, 6}

However,
{1, 4} ∪̃ {4, 6} ̸⊆ {1, 4, 6}

Hence, “tight” ensures that our join is the least upper bound.

The dual of join (∨) is meet (∧):

Definition 2: Meet (∧)

The meet ‘x ∧ y’ for some x, y ∈ A is the greatest element in poset A that is less
than both x and y. Which we formally define as:

• Less than x: x∧ y ≤ x

• Less than y: x∧ y ≤ y

• Tight : ∀z . z ≤ x ∧ z ≤ y → z ≤ (x∧ y)
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We can visualize these definitions in a Hasse Diagram:

Figure 1: ∨ and ∧ Hasse Diagram

(join)
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x y
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Now, the definition of lattices is quite simple.

Definition 3: ∨-semilattice (join-semilattice)

A poset (A,≤) is a ∨-semilattice iff a ∨ exists for every pair of elements in A.

Again, its dual is:

Definition 4: ∧-semilattice (meet-semilattice)

A poset (A,≤) is a ∧-semilattice iff a ∧ exists for every pair of elements in A.

We can combine these definitions as:

Definition 5: Lattice

A poset (A,≤) is a lattice iff both a ∨ and ∧ exist for every pair of elements in A.

For the remaining sections, only the semilattices are relevant.
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2.1. Galois Connections

With semilattices established, we can apply Galois Connections. The typical definition
of a (monotone2) Galois Connection is:

Definition 6: Galois Connection

Given two posets (A,≼) and (B,⊑) we define the Galois Connection (f, g) where

f : A → B

g : B → A

Then, f and g satisfy (for all x ∈ A and y ∈ B):

f(x) ⊑ y ⇔ x ≼ g(y)

We can visualize this definition as:

Figure 2: Galois Connection
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g(y)
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g

Note that both f and g are monotone functions, which follows from Definition 6. See
also Proof 1 in Appendix A.

2Galois Connections can also be antitone, which “flips” the order. Those are irrelevant here.
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The definition of Galois Connections merely requires posets, which need not necessarily
be lattices. We demonstrate that, on lattices, f and g uniquely determine each other.

Definition 7: Derived g

Given two posets (A,≼) and (B,⊑) where A is a ∨-semilattice with join ∨, and
given monotone function f : A → B. Then:

g(y) ≜
∨

{ z | f(z) ⊑ y }

Similarly:

Definition 8: Derived f

Given two posets (A,≼) and (B,⊑) where B is a ∧-semilattice with meet ∧, and
given monotone function g : B → A. Then:

f(x) ≜
∧

{ z | x ≼ g(z) }

Of course, we need to demonstrate that these definitions actually produce Galios Con-
nections (as given in Definition 6). For that, see Proof 2 and Proof 3 in Appendix A.
Interestingly, these definitions enforce that either A is a ∨-semilattice, or B is a

∧-semilattice. (While both are posets)

3. Abstract Interpretation

Now we can specialize our Galois Connections on lattices to abstract interpretation. In
abstract interpretation we consider our concrete domain C (with partial order ≼) and
our abstract domain A (with partial order ⊑). We then define our surjective3 abstraction
function:

α : C → A
and our injective4 concretization function:

γ : A → C

These form a Galois connection (α, γ). Which thus means (for all x ∈ C and y ∈ A):

α(x) ⊑ y ⇔ x ≼ γ(y)

That’s it. We established how both functions of a Galois Connection are related, and
briefly framed them in abstract interpretation.
That was all I considered missing in other explanations of abstract interpretation,

and have now discovered. For other details on abstract interpretation, there are better
resources in existence.
3surjective: ∀y ∈ A . ∃x ∈ C . α(x) = y
4injective: ∀x, y ∈ A . γ(x) = γ(y) → x = y
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A. Proofs

We consider f from Definition 6.

Proof 1: f is monotone

For Galois Connection (f, g) we demonstrate monotonicity of f (for all x, y ∈ A):

x ≼ y → f(x) ⊑ f(y)

Lemma 1. Because f(x) ⊑ f(y) ⇒ x ≼ g(f(y)) by (Def 6) we know:

∀x . x ≼ g(f(x))

If for any x, y ∈ A we know x ≼ y, and by Lemma 1 we know y ≼ g(f(y)), then
x ≼ g(f(y)). By the ⇐ of (Def 6) we know f(x) ⊑ f(y). Hence, f is monotonic.

The proof for monotonicity of g is similar.
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Proof 2: Definition 7 establishes a Galois Connection

We show both implications hold of:

f(x) ⊑ y ⇔ x ≼ g(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given (A) f(x) ⊑ y.

Lemma 2. From the definition of ∨ (for all x, ∨-semilattice X):

x ∈ X ⇒ x ≼
∨

X

We know x ∈ {z | z ≼ x}, so by Lemma 2: x ≼
∨
{z | z ≼ x}. Then:

x ≼
∨

{z | z ≼ x} [ f monotonic ]

≼
∨

{z | f(z) ⊑ f(x)} [ by transitivity of ⊑ with (A) ]

≼
∨

{z | f(z) ⊑ y} [ def g(y) ]

≼ g(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Given (B) x ≼ g(y).

Lemma 3. Because ∨ is tight and f is monotonic5 (for all y):

f(
∨

{z | f(z) ⊑ y}) ⊑ y

We know by (B):

x ≼ g(y) [ def g(y) ]

⇔ x ≼
∨

{z | f(z) ⊑ y} [ f is monotonic ]

⇒ f(x) ⊑ f(
∨

{z | f(z) ⊑ y}) [ by Lemma 3 (and transitivity of ⊑) ]

⇒ f(x) ⊑ y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hence, Definition 7 establishes a Galois Connection.

I know. This brushes over several details.
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Proof 3: Definition 8 establishes a Galois Connection

We show both implications hold of:

f(x) ⊑ y ⇔ x ≼ g(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given (A) f(x) ⊑ y.

Lemma 4. Because ∧ is tight and g is monotonic (for all x):

x ≼ g(∧{z | x ≼ g(z)})

We know by (A):

f(x) ⊑ y [ def f(x) ]

⇔
∧

{z | x ≼ g(z)} ⊑ y [ g is monotonic ]

⇒ g(
∧

{z | x ≼ g(z)}) ≼ g(y) [ by Lemma 4 (and transitivity of ≼) ]

⇒ x ≼ g(y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given (B) x ≼ g(y).

Lemma 5. From the definition of ∧ (for all x, ∧-semilattice X):

x ∈ X ⇒
∧

X ⊑ x

We know y ∈ {z | y ⊑ z}, so by Lemma 5:
∧
{z | y ⊑ z} ⊑ y. Then:

∧
{z | y ⊑ z} ⊑ y [ g is monotonic ]

⇒
∧

{z | g(y) ≼ g(z)} ⊑ y [ by transitivity of ≼ with (B) ]

⇒
∧

{z | x ≼ g(z)} ⊑ y [ def f(x) ]

⇔ f(x) ⊑ y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hence, Definition 8 establishes a Galois Connection.
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