Optimal Cost is Monotonic over Preconditions

Dennis Sprokholt

March 2022

1 Introduction

Often, we can leverage preconditions in program optimization. After all, if a program need only be correct for a smaller set of inputs, then a larger set of programs meets that requirement. Given such a set of programs, we are interested in the *optimal* program; For instance, the program with minimal execution time.

I realized that the *cost of an optimal program* for some specification is monotonic over the considered precondition (i.e., set of inputs). This has some interesting implications for *superoptimizers*, as weakening the precondition does *not* forfeit optimality; Though, it *may* violate correctness, but that is often easier to determine.

For simplicity, we consider the case where execution cost is *independent* from program input. This independence holds for linear instruction sequences. (The theorem should also hold when cost is dependent on the input – under some additional assumptions – which increases proof complexity)

2 Definitions

- \mathbb{S} The program *specification*.
- exec(p, x) exec executes program (or specification) p on input x, producing an output.
- cost(p) The cost of executing program p on any input.
- \equiv_X Extensional equivalence over domain X defined as (forall p and q):

 $p \equiv_X q \triangleq \forall x \in X.[\operatorname{exec}(p, x) \equiv \operatorname{exec}(q, x)]$

- $optcost(\mathbb{S}, X)$ The cost(p) of some program p, provided that both:
 - p satisfies \mathbb{S} (over X): $p \equiv_X \mathbb{S}$
 - -p has minimal cost (over X): $\neg \exists q. [\mathsf{cost}(q) < \mathsf{cost}(p) \land q \equiv_X \mathbb{S}]$

The domain X over which p is correct (w.r.t. \mathbb{S}) represents the *precondition*. We demonstrate:

Theorem 1 (Optimal Cost is Monotonic over Preconditions).

 $X \subseteq Y \implies \mathsf{optcost}(\mathbb{S}, X) \le \mathsf{optcost}(\mathbb{S}, Y)$ (for any X, Y, \mathbb{S})

If we *strengthen* the precondition, the optimal cost *may only decrease*. Conversely, if we *weaken* the precondition, the optimal cost *may only increase*.

3 Proof

We prove Theorem 1. For some specification S and preconditions X and Y,

(A) given that $X \subseteq Y$,

we show $\mathsf{optcost}(\mathbb{S}, X) \leq \mathsf{optcost}(\mathbb{S}, Y)$.

First, we define a lemma.

Lemma 1. If $p \equiv_Y q$ and $X \subseteq Y$ then $p \equiv_X q$. (for any X, Y, p, q)

This follows trivially from the definition of \equiv_X (and \subseteq).

Following the definition of optcost, we know:

- There exists a program p where $cost(p) = optcost(\mathbb{S}, X)$, which satisfies:
 - (B) p satisfies \mathbb{S} (over X): $p \equiv_X \mathbb{S}$
 - (C) p has minimal cost (over X): $\neg \exists z.[\mathsf{cost}(z) < \mathsf{cost}(p) \land z \equiv_X S]$
- There exists a program q where cost(q) = optcost(S, Y), which satisfies:
 - (D) q satisfies S (over Y): $q \equiv_Y S$
 - (E) q has minimal cost (over Y): $\neg \exists z.[\mathsf{cost}(z) < \mathsf{cost}(q) \land z \equiv_Y \mathbb{S}]$

We proceed with a proof by contradiction.

Assume cost(p) > cost(q). $q \equiv_Y S$ by (D), then by Lemma 1 with (A), we know $q \equiv_X S$. Thus we have:

$$cost(q) < cost(p) \land q \equiv_X \mathbb{S}$$

However, by (C), q cannot exist – as p has minimal cost (over X). Hence, we reached a contradiction.

Thus $cost(p) \le cost(q)$. Following their definitions, $optcost(\mathbb{S}, X) \le optcost(\mathbb{S}, Y)$.